This Jupyter notebook demostrates the book chapter named Integrating CyberGIS and Urban Sensing for Reproducible Streaming Analytics, including showing the locations for AoT sensors and the temperature curve for AoT nodes in Chicago.
We are using Chicago, IL, US as our study area. And this notebook uses geospatial libraries to show the deployment of AoT Nodes, spatial distrinution for AoT nodes in Chicago, and Temperature trends in Chiacago for one week.
The first part is a demostration that shows user how to prepare AoT Data,boundary data, and street data in Chicago.
Import numpy, pandas, geopandas, shapely and other libraries available in CyberGIS-Jupyter to set up an environment to store and manipulate the AoT data.
import pathlib
import os
import tarfile
#show Chicago GTFS data
import requests
import shutil
import zipfile
# using pandas to
import pandas as pd
# Plotting the deployment of AoT nodes in Chicago
import matplotlib.pyplot as plt
import datetime
%matplotlib inline
import numpy as np
import geopandas as gpd
from shapely.geometry import Point
Download the AoT data for Chicago in one week (between Sep 30th to Oct 6th in 2019.)
The AoT data was downloaded from https://api.arrayofthings.org/. The boundary data and street data were generated from https://www.openstreetmap.org/.
file = pathlib.Path("chicago-complete.weekly.2019-09-30-to-2019-10-06.tar")
if file.exists ():
print ("File exist")
else:
print ("File not exist, Downloading the data...")
#!wget https://s3.amazonaws.com/aot-tarballs/chicago-complete.weekly.2019-09-30-to-2019-10-06.tar
!wget https://www.hydroshare.org/resource/f184c03de5df442aa5a2ec01fa3252f7/data/contents/chicago-complete.weekly.2019-09-30-to-2019-10-06.tar
Create data directory if the directory not exist
if not os.path.exists('./data'):
print ("Directory not exist, create directory")
os.mkdir('./data')
else:
print ("Directory exist")
Extract the weekly chicago AoT data into data directory
file_tar = tarfile.open('chicago-complete.weekly.2019-09-30-to-2019-10-06.tar')
#specify which folder to extract
file_tar.extractall('./data')
file_tar.close()
Define the file path for the data
fn = './data/chicago-complete.weekly.2019-09-30-to-2019-10-06/data.csv.gz'
#print(os.path.isfile(fn))
Define the data directory
# data path
AoT_Data_Directory = './data/chicago-complete.weekly.2019-09-30-to-2019-10-06/'
Download the boundary and street data for Chicago
shpfile = pathlib.Path("shp.zip")
if shpfile.exists ():
print ("Shp Data exist")
else:
print ("Shp Data not exist, Downloading the data...")
!wget https://www.hydroshare.org/resource/f184c03de5df442aa5a2ec01fa3252f7/data/contents/shp.zip
with zipfile.ZipFile('shp.zip', 'r') as file:
file.extractall('./data')
read sensor information from nodes.csv where values are seperated by "," and display the first 15 rows of data
nodes = pd.read_csv(AoT_Data_Directory + 'nodes.csv', sep=",")
# the first 15 rows of data is displayed below
nodes.head(15)
Show the statistical number of the AoT Sensors
nodes.shape
The part is a demostration that shows Deployment of AoT Nodes, spatial distrinution for AoT nodes in Chicago, and Temperature trends in Chiacago for one week.
Show the Deployment of AoT Nodes of Chicago in each month
# Convert that column into a datetime datatype
nodes['start_timestamp'] = pd.to_datetime(nodes['start_timestamp'])
# Set the datetime column as the index
nodes.index = nodes['start_timestamp']
# Count up the number of nodes deployed in each month
nodecount = nodes['node_id'].resample('M').count()
plt.style.use('seaborn-darkgrid')
#plot data as a bar chart
fig, ax = plt.subplots()
nodecount.plot(kind='bar', ax = ax, figsize=[20,9], color=(0.2, 0.4, 0.6, 0.6))
f = lambda x: datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S').strftime('%b %Y')
ax.set_xticklabels([ f(x.get_text()) for x in ax.get_xticklabels()])
plt.xticks(fontsize = 20, rotation=60)
plt.yticks(fontsize = 20)
# Set title and labels
ax.set_title('Deployment of AoT Nodes in Chicago',fontsize = 25, fontdict = {'verticalalignment':'bottom'})
ax.set_xlabel('AoT Node Date',fontsize = 25, labelpad=25)
ax.set_ylabel('Number of Nodes',fontsize = 25, labelpad=25)
Show the Deployment of AoT Nodes in Chicago using cumulative value
nodes['start_timestamp'] = pd.to_datetime(nodes['start_timestamp'])
nodes.index = nodes['start_timestamp']
nodecount = nodes['node_id'].resample('M').count()
plt.style.use('seaborn-darkgrid')
fig, ax = plt.subplots()
nodecount.sort_index().cumsum().plot(ax = ax, figsize=[20,9], color=(0.2, 0.4, 0.6, 0.6), linewidth=4)
plt.tick_params(axis='both', which='both', labelsize=20)
ax.set_title('Deployment of AoT Nodes in Chicago',fontsize = 25, fontdict = {'verticalalignment':'bottom'})
ax.set_xlabel('AoT Node Date',fontsize = 25, labelpad=25)
ax.set_ylabel('Number of Nodes',fontsize = 25, labelpad=25)
Setting global variables for shapefiles for Chicago street and region
#
Chicago_Streets_Shapefiles = './data/shp/street-chicago.shp'
Chicago_Boundary_Shapefile = './data/shp/il-chicago.shp'
Show the sensor data in Chicago, red nodes are active and blue nodes are no longer reporting data
node_locations = pd.DataFrame()
# Pull the longitude and latitude information from the "nodes" dataframe
# Use zip to create set of lon, lat tuples then put into a list
node_locations['Coordinates'] = list(zip(nodes.lon, nodes.lat))
node_locations['Coordinates'] = node_locations['Coordinates'].apply(Point)
node_locationsDF = gpd.GeoDataFrame(node_locations, geometry='Coordinates')
# create a new column in the nodes dataframe called status, if the end timestamp is NaN then r is placed in
# the column otherwise a b is placed in column - this translates to red nodes are active and blue nodes
# are no longer reporting data
nodes['status'] = np.where(nodes['end_timestamp'].isnull(), 'r', 'b')
plt.style.use('default')
# This reads in a shapefile
streetmap = gpd.read_file(Chicago_Streets_Shapefiles)
f, ax = plt.subplots(1, figsize=(20, 20))
# Plots the Chicago streets
streetmap.plot(ax=ax, color='silver', zorder = 0)
boundary = gpd.read_file(Chicago_Boundary_Shapefile)
# Plots the boundary of Chicago
#boundary.plot(ax = ax, alpha = 0.1, linewidth = 1.0, edgecolor = 'red', zorder = 5)
boundary.plot(ax=ax, color='white', alpha = 0.4, linewidth=5.5, edgecolor='red', zorder = 5)
# Plot locations on the map as a new layer - zorder ensures the nodes are on top and
for node_status, node in nodes.groupby('status'):
ax.plot(node['lon'], node['lat'], marker='o', linestyle='', ms=5, label=node_status, zorder = 10)
ax.legend(['Not Active','Active'],fontsize=20)
ax.set_axis_off()
ax.set_title('Spatial distrinution for AoT nodes in Chicago', fontsize = 25, fontdict = {'verticalalignment':'bottom'})
Load one week data (about 50 seconds) and show the first 10 rows of data.
#load full dataset (time the loading via %time)
#about 50 seconds
%time weekdata = pd.read_csv(fn, compression='gzip')
#%time weekdata = pd.read_csv(AoT_Data_Directory + 'data.csv',sep=",")
weekdata.head(10)
Converts the timestamp type to datetime and convert the temperature values into floats
%time temperature = weekdata[weekdata['parameter'] == 'temperature'].copy()
# Convert that column into a datetime datatype
temperature['timestamp'] = pd.to_datetime(temperature['timestamp'])
# Converts the timestamp type to datetime
temperature.timestamp = pd.to_datetime(temperature.timestamp)
# Convert the temperature values into floats so they can be plotted
%time temperature.value_hrf = pd.to_numeric(temperature['value_hrf'], errors='coerce').fillna(0)
temperature.index = temperature['timestamp']
Show the temperature trends in Chiacago for one week using "°C"
TSYS01 = temperature[temperature['sensor'] == 'tsys01']
TSYS01.index = TSYS01['timestamp']
del TSYS01['timestamp']
# Set the graphing style
plt.style.use('seaborn-darkgrid')
#plot data as a bar chart
fig, ax = plt.subplots()
plt.xticks(fontsize = 20, rotation=60)
plt.yticks(fontsize = 20)
ax.set_ylim(0, 50)
# Set title and labels
#Temperature for All Nodes in Chicago within one week
ax.set_title('Temperature for All Nodes for Sensor TSYS01',fontsize = 25, fontdict = {'verticalalignment':'bottom'})
ax.set_ylabel('Temperature (°C)',fontsize = 25, labelpad=25)
for nodeId, t in TSYS01.groupby('node_id'):
t['value_hrf'].plot(ax = ax, figsize=[20,9], linewidth=0.1)
ax.set_xlabel('Week of Data', fontsize = 25, labelpad=25)
Convert celsius to fahrenheit
# function for converting celsius to fahrenheit
def celsius_to_fahrenheit(temp):
newtemp = temp*1.8 + 32.0
return newtemp
#ignore warning with chained copy warning
pd.set_option('mode.chained_assignment', None)
TSYS01["common_temp"] = celsius_to_fahrenheit(TSYS01["value_hrf"])
Show the temperature trends in Chiacago for one week using "F"
# Set the graphing style
plt.style.use('seaborn-darkgrid')
#plot data as a bar chart
fig, ax = plt.subplots()
plt.xticks(fontsize = 20, rotation=60)
plt.yticks(fontsize = 20)
ax.set_ylim(0, 120)
# Set title and labels
ax.set_title('Temperature for All Nodes for Sensor TSYS01',fontsize = 25, fontdict = {'verticalalignment':'bottom'})
ax.set_ylabel('Temperature (F)',fontsize = 25, labelpad=25)
for nodeId, t in TSYS01.groupby('node_id'):
t['common_temp'].plot(ax = ax, figsize=[20,9], linewidth=0.1)
ax.set_xlabel('Week of Data', fontsize = 25, labelpad=25)